PRIMARY DEPENDENCE OF 7-ARYL-2,5-DI-t-BUTYL-1,3,5-CYCLOHEPTATRIENE VALENCE TAUTOMERISM ON THE π -ACCEPTOR STRENGTH OF THE 7-ARYL SUBSTITUENT

Ken'ichi TAKEUCHI, Hiroshi FUJIMOTO, and Kunio OKAMOTO*

Department of Hydrocarbon Chemistry, Faculty of Engineering, Kyoto University, Sakyo-ku, Kyoto 606, Japan

<u>Abstract</u>. ¹³C NMR studies showed that the population of the norcaradiene form of the title systems containing p-CH₃O, H, and p-CF₃ on the 7-aryl group increases in this order. The result is consistent with the prediction from the π -acceptor strength of the aryl group estimated by INDO calculations.

Various factors affect cycloheptatriene (CHT) - norcaradiene (NCD) equilibria.¹ Among those the remarkable effects of electron-withdrawing substituents such as CN, COOH, or CHO at the 7-position to favor the NCD form have been ascribed by Hoffmann^{2a} and Gunther^{2b} to electron donation from the Walsh orbital of the cyclopropane ring in the NCD form toward low-lying unoccupied π -MO of the substituent. Because the orbital is antibonding between C(1) and C(6), this electron delocalization has been interpreted to strengthen the C(1)-C(6) bond.² On the other hand, the complicating effects of anyl substituents on the equilibrium (1 ± 2) reported by Hall and Roberts³ have been interpreted to render the above theory untenable in a general way:" the equilibrium constant increases in the order H < NO $_2$ < OCH $_3$ at below 32.5°C, whereas

the order is reversed at above $75^{\circ}C.^{3}$ Thus either order is incompatible with the order $OCH_3 < H < NO_2$ predicted from the increasing order of the π -acceptor strength of the aryl group.^{1a,4} Later, Gunther and his coworkers showed that the system $1 \rightleftharpoons 2$ is unsuitable for examining the above theory because the aryl group in 2 is actually oriented endo and assumes an unfavorable conformation for electron acceptance from the cyclopropane ring, with the 2pzorbital being orthogonal to the Walsh orbital.⁵ Unfortunately, the existence of 7-phenyl-1,3,5-cycloheptatriene essentially in the CHT form⁶ prevented examination of the exo-aryl substituent effect in the parent system where the aryl group can assume a favorable conformation for electron acceptance.

Previously we reported that the introduction of two t-butyl groups to the 2- and 5positions of 7-t-buty1-7-cyano-1,3,5-cycloheptatriene enormously shifts the equilibrium to the NCD form.⁷ Here we wish to report that the application of this technique to 7-aryl-1,3,5cycloheptatriene (3a = 4a, 3b = 4b, 3c = 4c) brings the population of the NCD form (4) to approximately 30% at 25°C, thereby permitting determination of the equilibrium constants by ¹³C NMR. The most important conclusion reached is that the NCD form is stabilized in the order OCH₃ < H < CF₃, which is consistent with the increasing order of the π -acceptor strength of the aryl group predicted from INDO calculations.

The three equilibrating systems (3 ± 4) were prepared by treating 1,4-di-t-butyltropylium perchlorate⁷ with the corresponding aryl Grignard reagents, and the products purified by recrystallization or HPLC. The ¹³C NMR spectra were measured in CS₂-CD₂Cl₂ (3:1 in vol.) at 25° and -112°C. Pertinent spectral data are summarized in Table 1, and the spectra for $3b \pm 4b$ are shown in the Figure as a representative example. At 25°C, only time averaged signals are observed, whereas at -112°C each signal splits into two, each of which corresponds to either of 3b or 4b.⁸'⁹ No indication for the existence of conformational or configurational isomers other than 3 or 4 has been obtained, as evident in the ¹³C NMR spectra (Fig.). The equilibrium constants for 3 ± 4 at 25°C were calculated by applying the equation K = $(\delta_{CHT} - \delta)/(\delta - \delta_{NCD})$ to the C(1,6), C(3,4), and C(7) signals, whereas those for 3 ± 4 at -112°C were determined by measuring signal intensities for five CHT - NCD signal pairs which were selected from the six

Х	Temp./°C	Structure	C(1,6)	C(2,5)	C(3,4)	C(7)	(<u>C</u> H ₃) ₃ C	(CH ₃)3 <u>C</u>
0CH3 ^b	25	3a ≂ 4a	100.14	143.51	126.21	38.74	29.63	34.21
	-112	3a	124.39	142.61	130.86	44.23	29.75	34.09
	-112	4a	31.17	144.95	112.25	23.17	28.39	35.16
н ^с	25	3b == 4b	93.50	143.80	124.95	38.11	29.43	34.26
	-112	3b	124.19	142.86	130.92	45.20	29.80	34.19
	-112	4b	31.95	145.15	112.54	24.00	28.39	35.26
CF3 ^d	25	3c \ 4c	86.74	144.38	124.07	36.74	29.38	34.45
	-112	3c	123.17	143.34	131.01	45.10	29.70	34.19
	-112	4 <u>c</u>	33.02	145.05	112.99	24.30	28.34	35.26

Table 1. ¹³C NMR (25 MHz) chemical shifts (δ) for $3 \rightleftharpoons 4$ systems at 25° and -112°C.^a

(a) The chemical shifts from TMS were calculated on the basis of the δ -value of CD₂Cl₂ (53.11 at 25° and 54.21 at -112°C) in CS₂-CD₂Cl₂ (3:1 in vol.). The concentrations were 0.072 M for $3a \rightleftharpoons 4a$, 0.14 M for $3b \rightleftharpoons 4b$, and 0.17 M for $3c \oiint 4c$. The spectra were recorded on a JEOL JNM FX100 at a spectral width of 5000 Hz by use of a 45° pulse and a pulse repetition of 1.5 s. (b) Mp 69.5 - 71.5°C. (c) Mp 73.0 - 74.0°C. (d) Mp 105.0 - 105.5°C.

Figure. ¹³C NMR (25 MHz) spectra for the $3b \implies 4b$ system in CS₂-CD₂Cl₂ (3:1 in vol.) at 25° and -112°C. The solid and the dotted lines represent the signals assigned to 3b and 4b, respectively. For measurement conditions see the footnote of Table 1.

		~ ~ ~ ~ ~				
X	Temp./°C	Popula 3≳	tion/% ^a 4	К	ΔH°/kJ mol ⁻¹ ΔS°/J K ⁻¹ mol ⁻¹	
0CH3	25 -112	74.3±0.6 89.6±0.6	25.7±0.6 10.4±0.6	0.346 0.116	+3.19	+1.9
Н	25 -112	66.9±0.5 74.9±1.2	33.1±0.5 25.1±1.2	0.495 0.335 /	+1.13	-2.5
CF3	25 -112	60.3±1.0 56.5±0.8	39.7±1.0 43.5±0.8	0.658 0.770	-0.46	-5.0

Table 2. Populations, equilibrium constants, and thermodynamic parameters for $\mathfrak{Z} \rightleftharpoons \mathfrak{L}$ systems.

(a) For calculation see text.

pairs listed in Table 1. The results are summarized in Table 2 along with thermodynamic parameters. At either temperature the equilibrium constant increases in the order $OCH_3 < H < CF_3$.

Three extended lines of the customary plot of ln K values at 25° and -112°C vs. 1/T crostat the point corresponding to 253°C, suggesting that the order of the equilibrium constant is reversed to CF₃ < H < 0CH₃ at the higher temperatures provided that the plot 1s linear over

such a wide temperature range. However, at lower temperatures, where the equilibrium is principally controlled by ΔH° , the stability of the NCD form 4 follows the order predicted from the π -acceptor strength of the aryl group which is evaluated by INDO calculations as below.

The ability of the pm atomic orbital χ_{r} in an aryl fragment for electron acceptance is estimated by $\Sigma_{j}^{uno} c_{jr}^{2}/(\varepsilon_{j} - \varepsilon_{\sigma} - \lambda)$,¹¹ where c_{jr} is the coefficient of the atomic orbital in the unoccupied π -MO Φ_{j} , ε_{j} and ε_{σ} denote energies of the aryl π -MO and the antisymmetric occupied Walsh orbital of cyclopropane ring, respectively, and λ stands for the repulsion between a pair of electrons populated in these MO's. ε_{σ} is suggested to be in the range $-0.5 \sim -0.6$ (-0.527 in the case of cyclopropane) and λ is evaluated to be $0.1 \sim 0.2$ in atomic unit. Summing up the quantity over all the unoccupied π -MO's of the aryl fragment, an INDO SCF MO calculation yielded 0.731, 0.690 and 0.654 for ϕ -CF₃, ϕ -H and ϕ -OCH₃ in the case of $-\varepsilon_{\sigma} - \lambda = 0.5$, and 1.034, 0.958 and 0.902 in the case of $-\varepsilon_{\sigma} - \lambda = 0.3$, with regard to the ary carbon atom which is located adjacent to C(7). This result is consistent with the experimenta results and supports the notion of Hoffmann^{2a} and of Guither^{2b}.

References and notes

- 1. a) W. J. le Noble, "Highlights of Organic Chemistry", Marcel Dekker, Inc., New York, 1974, p. 402; b) K. Takahashi, K. Takase, and H. Toda, Chem. Lett., 979 (1981), and references cited therein.
- 2. a) R. Hoffmann, Tetrahedron Lett., 2907 (1970); b) H. Gunther, ibid., 5173 (1970).
- 3. G. E. Hall and J. D. Roberts, J. Amer. Chem. Soc., 93, 2203 (1971).
- T. H. Lowry and K. S. Richardson, "Mechanism and Theory in Organic Chemistry", Harper & Row, Publishers, New York, 1976, p. 654.
- 5. H. Gunther, W. Peters, and R. Wehner, Chem. Ber., 106, 3683 (1973).
- 6. a) H. Gunther, M. Gorlıtz, and H.-H. Hinrichs, Tetrahedron, <u>24</u>, 5665 (1968); b) R. W. Murray and M. L. Kaplan, J. Amer. Chem. Soc., <u>88</u>, 3527 (1966); c) A. P. ter Borg and H. Kloosterziel, Recl. Trav. Chim. Pays-Bas, <u>82</u>, 741 (1963).
- 7. K. Takeuchi, M. Arima, and K. Okamoto, Tetrahedron Lett., 22, 3081 (1981).
- 8. All the signals were assigned with the aid of ^{1}H NMR and off-resonance $^{1}3C$ NMR spectra: the details will be presented elsewhere.
- 9. The ¹H NMR spectrum of the <u>3b</u> == <u>4b</u> system in CS₂-CD₂Cl₂ (3:1 in vol.) at -110°C exhibits H(7) of <u>3b</u> at δ 2.49 (t, J=5.6 Hz). This δ -value agrees well with δ 2.68^{6a} for H(7) of 7-phenyl-1,3,5-cycloheptatriene, in which H(7) is known to assume axial conformation.⁶ In the same spectrum H(7) of <u>4b</u> appears at δ 0.80 (t, J=4.0 Hz). This upfield shift of H(7) of the NCD form as compared with δ 1.71¹⁰ for H(1) of cyclopropylbenzene indicates the endo configuration of H(7). The coupling constant (4.0 Hz) which is comparable to Jtrans = 6.30¹⁰ rather than J_{CIS} = 9.45 Hz¹⁰ of cyclopropylbenzene also substantiates the configuration of <u>4b</u>.
- J. Bacon, R. J. Gillespie, and K. C. Westaway, cited in W. Brügel, "Handbook of NMR Spectral Parameters", Vol. 1, Heyden & Sons, Ltd., London, 1979, p. 251.
- 11. K. Fukui and H. Fujimoto, Bull. Chem. Soc. Jpn., <u>41</u>, 1989 (1968).

(Received in Japan 25 August 1981)