Tetrahedron Letters,Vol.22,No.49,pp 4981-4984,1981 0040-4039/81/494981-04\$02.00/o ©1981 Pergamon Press Ltd.

PRIMARY DEPENDENCE OF 7-ARYL-2,5-DI-t-BUTYL-1,3,5_CYCLOHEPTATRIENE VALENCE TAUTOMERISM ON THE n-ACCEPTOR STRENGTH OF THE 7-ARYL SUBSTITUENT

Ken'ichi TAKEUCHI, Hiroshi FUJIMOTO, and Kunio OKAMOTO*

Department of Hydrocarbon Chemistry, Faculty of Engineering, Kyoto University, Sakyo-ku, Kyoto 606, Japan

Abstract. ''C NMR studies showed that the population of the norcaradiene form of the title **systems containing p-CH30, H, and p-CF3 on the 7-aryl group increases in this order. The result is consistent with the prediction from the n-acceptor strength of the aryl group estimated by INDO calculations.**

Various factors affect cycloheptatriene (CHT) - norcaradiene (NCD) equilibria.' Among those the remarkable effects of electron-withdrawing substituents such as CN, COOH, or CHO at the 7-position to favor the NCD form have been ascribed by Hoffmann^{2a} and Gunther^{2b} to electron **donation from the Walsh orbital of the cyclopropane ring in the NCD form toward low-lying un**occupied π -MO of the substituent. Because the orbital is antibonding between $C(1)$ and $C(6)$, **this electron delocalization has been interpreted to strengthen the C(l)-C(6) bond.' On the** other hand, the complicating effects of aryl substituents on the equilibrium $(1 \rightleftharpoons 2)$ reported by Hall and Roberts³ have been interpreted to render the above theory untenable in a general **way:\$ the equilibrium constant increases in the order H < NO2 < 0CH3 at below 32.5"C, whereas**

the order is reversed at above 75°C.³ Thus either order is incompatible with the order **OCH3 < H < NO2 predicted from the increasing order of the n-acceptor strength of the aryl** group.^{1a,4} Later, Gunther and his coworkers showed that the system $1\rightleftharpoons 2$ is unsuitable for **examining the above theory because the aryl group in 2 is actually oriented endo and assumes an** unfavorable conformation for electron acceptance from the cyclopropane ring, with the 2p_z**orbital being orthogonal to the Walsh orbital.' Unfortunately, the existence of 7-phenyl-1,3,5-cycloheptatnene essentially in the CHT form6 prevented examination of the exo-aryl substituent effect in the parent system where the aryl group can assume a favorable conformation for electron acceptance.**

Previously we reported that the introduction of two t-butyl groups to the 2- and 5 positions of 7-t-butyl-7-cyano-1,3,5-cycloheptatriene enormously shifts the equilibrium to the **NCD form.7 Here we wish to report that the application of this technique to 7-aryl-1,3,5-**

4981

cycloheptatriene $(3a \rightleftarrows 4a, 3b \rightleftarrows 4b, 3c \rightleftarrows 4c)$ brings the population of the NCD form (4) to **approximately 30% at 25"C, thereby permitting determination of the equilibrium constants by 13C NMR. The most important conclusion reached is that the NCD form is stabilized in the order** $0CH₃ < H < CF₃$, which is consistent with the increasing order of the π -acceptor strength of the **aryl group predicted from** INDO **calculations.**

The three equilibrating systems $(3 \rightleftarrows 4)$ were prepared by treating 1,4-di-t-butyltropylium perchlorate⁷ with the corresponding aryl Grignard reagents, and the products purified by re**crystallization or HPLC. The l3C NMR spectra were measured in CS2-CD2Cl2 (3:1 in vol.) at 25"** and -112°C. Pertinent spectral data are summarized in Table 1, and the spectra for $3b \rightleftharpoons 4b$ **are shown in the Figure as a representative example. At 25'C, only time averaged signals are observed, whereas at -112°C each signal splits into two, each of which corresponds to either** of 3b or 4b.^{8,9} No indication for the existence of conformational or configurational isomers **other than 2 or 4 has been obtained, as evident in the 13C NMR spectra (Fig.). The equilibrium** constants for $3 \implies 4$ at 25°C were calculated by applying the equation K = $(6$ _{CHT} - $6)/(6 - 6$ _{NCD}) to the C(1,6), C(3,4), and C(7) signals, whereas those for $3 \implies 4$ at -112°C were determined by **measuring signal intensities for five CHT - NCD signal pairs which were selected from the six**

χ	$Temp./^{\circ}C$	Structure	C(1,6)	C(2,5)	C(3, 4)	C(7)		(CH_3) ₃ C (CH_3) ₃ C
$OCH3$ b	25	$3a \rightleftharpoons 4a$	100.14	143.51	126.21	38.74	29.63	34.21
	-112	$\frac{3a}{2}$	124.39	142.61	130.86	44.23	29.75	34.09
	-112	4a	31.17	144.95	112.25	23.17	28.39	35.16
H^{C}	25	$3b \rightleftharpoons 4b$	93.50	143.80	124.95	38.11	29.43	34.26
	-112	3b	124.19	142.86	130.92	45.20	29.80	34.19
	-112	4 _b	31.95	145.15	112.54	24.00	28.39	35.26
CF ₃ ^d	25	$3c \rightleftharpoons 4c$	86.74	144.38	124.07	36.74	29.38	34.45
	-112	3c	123.17	143.34	131.01	45.10	29.70	34.19
	-112	4c	33.02	145.05	112.99	24.30	28.34	35.26

Table 1. ¹³C NMR (25 MHz) chemical shifts (δ) for $3 \rightleftharpoons 4$ systems at 25° and -112°C.^a

(a) The chemical shifts from TMS were calculated on the basis of the b-value of CO2Cl2 (53.11 at 25' and 54.21 at -112°C) in CS2-CD2Cl2 (3:1 in vol.). The concentrations were 0.072 M for $\frac{1}{20} \rightleftharpoons 4a$, 0.14 M for $\frac{1}{20} \rightleftharpoons 4b$, and 0.17 M for $\frac{1}{20} \rightleftharpoons 4b$ **The spectra were recorded on a JEOL JNM FXlOO at a spectral width of 5000 HZ by use of a 45" pulse and a pulse repetition of 1.5 s. (b) Mp 69.5 - 71.5"C. (c) Mp 73.0 - 74.O"C. (d) Mp 105.0 - 105.5"C.**

Figure. '³C NMR (25 MHz) spectra for the 3b . ' at 25" and -112°C. 4_b system in CS2-CD2C12 (3:l in vol.) The solid and the dotted lines represent the signals asslgned to 3b and $4b$, respectively. For measurement conditions see the footnote of Table 1.

x	Temp./ \degree C	3	Population/% ^a $\frac{4}{\sqrt{2}}$	K	$\Delta H^{\circ}/kJ$ mol ⁻¹ $\Delta S^{\circ}/J$ K ⁻¹ mol ⁻¹	
OCH ₃	25 -112	74.3 ± 0.6 89.6 ± 0.6	25.7 ± 0.6 10.4 ± 0.6	0.346 0.116	$+3.19$	$+1.9$
H	25 -112	66.9 ± 0.5 74.9 ± 1.2	33.1 ± 0.5 25.1 ± 1.2	0.495 0.335	$+1.13$	-2.5
CF ₃	25 -112	60.3 ± 1.0 56.5 ± 0.8	39.7 ± 1.0 43.5 ± 0.8	0.658 0.770	-0.46	-5.0 ヽ

Table 2. Populations, equilibrium constants, and thermodynamic parameters for $3 \rightleftharpoons 4$ systems.

(a) For calculation see text.

pairs listed in Table 1. The results are summarized in Table 2 along with thermodynamic parameters. At either temperature the equilibrium constant increases in the order OCH₃ < H < **CF3.**

Three extended lines of the customary plot of In K values at 25" and -112°C vs. l/T cros' at the point corresponding to 253"C, suggesting that the order of the equilibrium constant is reversed to CF3 < H < 0CH3 at the higher temperatures provided that the plot IS linear over

such a wide temperature range. However, at lower temperatures, where the equilibrium is principally controlled by AH", **the stability of the NC0 form 4_ follows the order predicted from the r-acceptor strength of the aryl group which is evaluated by** INDO **calculations as below.**

The ability of the $p\pi$ atomic orbital χ_{μ} in an aryl fragment for electron acceptance is estimated by $\Sigma^{***}_{\rm i}C_{\rm ip}/(\varepsilon_{\rm i}-\varepsilon_{\rm f}-\lambda)$,¹¹ where c_{in} is the coefficient of the atomic orbital in **the unoccupied n-MO Q., ~~ and ho J denote energies of the aryl r-MO and the antisymmetric occupied Walsh orbital of cyclopropane ring, respectively, and A stands for the repulsion** between a pair of electrons populated in these $MO's$. ε_{α} is suggested to be in the range $-0.5 \sim -0.6$ (-0.527 in the case of cyclopropane) and λ is evaluated to be 0.1 \sim 0.2 in atomic **unit. Summing up the quantity over all the unoccupied n-MO's of the aryl fragment, an** INDO SCF MO calculation yielded 0.731, 0.690 and 0.654 for ϕ -CF₃, ϕ -H and ϕ -OCH₃ in the case of $- \varepsilon_{\sigma}$ - $\lambda = 0.5$, and 1.034, 0.958 and 0.902 in the case of $-\varepsilon_{\sigma}$ - $\lambda = 0.3$, with regard to the ary **carbon atom which is located adjacent to C(7). This result is consistent with the experimenta** results and supports the notion of Hoffmann^{2a} and of Gunther^{2b}.

References and notes

- **1. a) W. J. le Noble, "Highlights of Organic Chemistry", Marcel Dekker,** Inc., New **York, 1974, p. 402; b) K. Takahashi, K. Takase, and H. Toda, Chem. Lett., 979 (1981), and references cited therein.**
- **2. a) R. Hoffmann, Tetrahedron Lett., 2907 (1970); b) H. Gunther, ibid., 5173 (1970).**
- **3. G. E. Hall and J. 0. Roberts, J. Amer. Chem. Sot.,** !Y& **2203 (1971).**
- **4. T. H. Lowry and K. S. Richardson, "Mechanism and Theory in Organic Chemistry", Harper & Row, Publishers, New York, 1976, p. 654.**
- **5. H. Gunther, W. Peters, and R. Wehner, Chem. Ber., 106, 3683 (1973).**
- **6. a) H. Gunther, M. Gorlltz, and H.-H. Hinrichs, Tetrahedron, 24, 5665 (1968); b) R. W. Murray and M. L. Kaplan, J. Amer. Chem. Sot., 88, 3527 (1966); c) A. P. ter Borg and H. Kloosterziel, Reel. Trav. Chim. Pays-Bas, 82_, 741 (1963).**
- **7. K. Takeuchi, M. Arima, and K. Okamoto, Tetrahedron Lett., 22, 3081 (1981).**
- **8. All the signals were assigned with the aid of lH NMR and off-resonance 13C NMR spectra: the details will be presented elsewhere.**
- 9. The 'H NMR spectrum of the 3b \rightleftharpoons 4b system in CS₂-CD₂Cl₂ (3:l in vol.) at -110°C exhibits H(7) of 3b at δ 2.49 (t, J=5.6 Hz). This δ -value agrees well with δ 2.68^{6a} for H(7) of **7-phenyl-1,3,5_cycloheptatriene, in which H(7) is known to assume axial conformation.6** In the same spectrum H(7) of $4b$ appears at δ 0.80 (t, J=4.0 Hz). This upfield shift of H(7) of the NCD form as compared with δ 1.71¹⁰ for H(1) of cyclopropylbenzene indicates the **endo configuration of H(7). The coupling constant (4.0 Hz) which is comparable to** J_{trans} = 6.30¹ rather than J_{cis} = 9.45 Hz¹⁰ of cyclopropylbenzene also substantiates the configuration of 4b.
- **10. J. Bacon, R. J. Gillespie, and K. C. Westaway, cited in W. Briigel, "Handbook of NMR Spectral Parameters", Vol. 1, Heyden & Sons, Ltd., London, 1979, p. 251.**
- **11. K. Fukui and H. Fujimoto, Bull. Chem. Sot. Jpn., 4l_, 1989 (1968).**

(Received in Japan **25 August 1981)**