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Abstract. l3 C NMR studies showed that the population of the norcaradiene form of the title 
systems containing p-CH30, H, and p-CF3 on the 7-aryl group increases in this order. The 
result is consistent with the prediction from the n-acceptor strength of the aryl group esti- 
mated by INDO calculations. 

Various factors affect cycloheptatriene (CHT) - norcaradiene (NCD) equilibria.' Among 

those the remarkable effects of electron-withdrawing substituents such as CN, COOH, or CHO at 

the 7-position to favor the NCD form have been ascribed by Hoffmannza and Guntherzb to electron 

donation from the Walsh orbital of the cyclopropane ring in the NCD form toward low-lying un- 

occupied IT-MO of the substituent. Because the orbital is antibonding between C(1) and C(6), 

this electron delocalization has been interpreted to strengthen the C(l)-C(6) bond.' On the 

other hand, the complicating effects of aryl substituents on the equilibrium (l_= 2) reported 

by Hall and Roberts3 have been interpreted to render the above theory untenable in a general 

way:$ the equilibrium constant increases in the order H < NO2 < 0CH3 at below 32.5"C, whereas 

cyo,c+o 
fLyf-&_ 

5 6 

X = OCH3, H, NO2 

the order is reversed at above 75°C.3 Thus either order is incompatible with the order 

OCH3 < H < NO2 predicted from the increasing order of the n-acceptor strength of the aryl 

group.1a'4 Later, Gunther and his coworkers showed that the system 1ti2_ is unsuitable for 

examining the above theory because the aryl group in 2 is actually oriented endo and assumes an 

unfavorable conformation for electron acceptance from the cyclopropane ring, with the 2p,- 

orbital being orthogonal to the Walsh orbital.' Unfortunately, the existence of 7-phenyl- 

1,3,5-cycloheptatnene essentially in the CHT form6 prevented examination of the exo-aryl 

substituent effect in the parent system where the aryl group can assume a favorable conformation 

for electron acceptance. 

Previously we reported that the introduction of two t-butyl groups to the 2- and 5- 

positions of 7-t-butyl-7-cyano-1,3,5_cycloheptatriene enormously shifts the equilibrium to the 

NCD form.7 Here we wish to report that the application of this technique to 7-aryl-1,3,5- 

4981 



4982 

cycloheptatriene (3_a= 4a, 3&,4_b, $ _ -42) brings the population of the NCD form (4,) to 

approximately 30% at 25"C, thereby permitting determination of the equilibrium constants by 

13C NMR. The most important conclusion reached is that the NCD form is stabilized in the order 

0CH3 < H < CF3, which IS consistent with the increasing order of the n-acceptor strength of the 

aryl group predicted from INDO calculations. 

The three equilibrating systems (zti 2) were prepared by treating 1,4-di-t-butyltropylium 

perchlorate with the corresponding aryl Grignard reagents, and the products purified by re- 

crystallization or HPLC. The l3C NMR spectra were measured in CS2-CD2Cl2 (3:1 in vol.) at 25" 

and -112°C. Pertinent spectral data are summarized in Table 1, and the spectra for z,% 

are shown in the Figure as a representative example. At 25'C, only time averaged signals are 

observed, whereas at -112°C each signal splits into two, each of which corresponds to either 

of z or 4&.*" No indication for the existence of conformational or configurational isomers 

other than 2 or 4 has been obtained, as evident in the 13C NMR spectra (Fig.). The equilibrium 

constants for xz= 2 at 25°C were calculated by applying the equation K = (6CHT - 6)/(6 - 6NCD) 

to the C(l,6), C(3,4), and C(7) signals, whereas those for 3_- -'ft. at -112°C were determined by 

measuring signal intensities for five CHT - NCD signal pairs which were selected from the six 

Table 1. 13C NMR (25 MHz) chemical shifts (6) for 3+4_ systems at 25" and -l12"C.a 

X Temp./"C Structure C(l,6) ~(2~5) C(3,4) C(7) (CH3)3C (CH3)3C 

OCH3b 25 3_a=fta 100.14 143.51 126.21 38.74 29.63 34.21 

-112 ?a 124.39 142.61 130.86 44.23 29.75 34.09 

-112 4_a 31.17 144.95 112.25 23.17 28.39 35.16 

HC 25 z=Z4_b 93.50 143.80 124.95 38.11 29.43 34.26 

-112 z!? 124.19 142.86 130.92 45.20 29.80 34.19 

-112 4b 31.95 145.15 112.54 24.00 28.39 35.26 

CF3d 25 z-_G 86.74 144.38 124.07 36.74 29.38 34.45 

-112 3c 123.17 143.34 131.01 45.10 29.70 34.19 

-112 4,c 33.02 145.05 112.99 24.30 28.34 35.26 

(a) The chemical shifts from TMS were calculated on the basis of the b-value of 
CO2Cl2 (53.11 at 25' and 54.21 at -112°C) in CS2-CD2Cl2 (3:1 in vol.). The con- 
centrations were 0.072 M for 3_azQ, 0.14 M for 3&=4_b, and 0.17 M for 3_~=$g. 
The spectra were recorded on a JEOL JNM FXlOO at a spectral width of 5000 HZ by 
use of a 45" pulse and a pulse repetition of 1.5 s. (b) Mp 69.5 - 71.5"C. 
(c) Mp 73.0 - 74.O"C. (d) Mp 105.0 - 105.5"C. 
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Figure. '3C NMR (25 MHz) spectra for the 3_bti 
at 25" and -112°C. 

4_b system in CS2-CD2C12 (3:l in vol.) 
The solid and the dotted lines represent the signals asslgned to 

z and 4b, respectively. For measurement conditions see the footnote of Table 1. 

Table 2. Populations, equilibrium constants, and thermodynamic parameters 
for 2s ft. systems. 

X Temp./"C 
Population/Za 

3 4 
K AH'/kJ mol 

-1 
AS”/J K-'mol 

-1 

0CH3 25 74.3tO.6 25.7tO.6 0.346 +3.19 +1.9 

-112 89.6tO.6 10.4iO.6 0.116 

H 25 66.9kO.5 33.1kO.5 0.495 +1.13 -2.5 

-112 74.9kl.2 25.1k1.2 0.335' 

CF3 25 60.3tl.O 39.7kl.O 0.658 -0.46 -5.0 

-112 56.5kO.8 43.5~0.8 0.770 
\ 

(a) For calculation see text. 

pairs listed in Table 1. The results are summarized in Table 2 along with thermodynamic 

parameters. At either temperature the equilibrium constant increases in the order OCH3 < H < 

CF3. 

Three extended lines of the customary plot of In K values at 25" and -112°C vs. l/T cros' 

at the point corresponding to 253"C, suggesting that the order of the equilibrium constant is 

reversed to CF3 < H < 0CH3 at the higher temperatures provided that the plot IS linear over 
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such a wide temperature range. However, at lower temperatures, where the equilibrium is 

principally controlled by AH”, the stability of the NC0 form 4_ follows the order predicted 

from the r-acceptor strength of the aryl group which is evaluated by INDO calculations as 

below. 

The ability of the p1~ atomic orbital x, in an aryl fragment for electron acceptance is 

estimated by Zynocjr2/(sJ - ho - X),'l where cjr is the coefficient of the atomic orbital in 

the unoccupied n-MO Q., ~~ and ho 
J 

denote energies of the aryl r-MO and the antisymmetric 

occupied Walsh orbital of cyclopropane ring, respectively, and A stands for the repulsion 

between a pair of electrons populated in these MO's. ho is suggested to be in the range 

-0.5 s -0.6 (-0.527 in the case of cyclopropane) and h is evaluated to be 0.1 s 0.2 in atomic 

unit. Summing up the quantity over all the unoccupied n-MO's of the aryl fragment, an INDO 

SCF MO calculation yielded 0.731, 0.690 and 0.654 for $I-CF3, a-H and +OCH3 in the case of 

-%I - X = 0.5, and 1.034, 0.958 and 0.902 in the case of -E. - X = 0.3, with regard to the ary 

carbon atom which is located adjacent to C(7). This result is consistent with the experimenta 

results and supports the notion of Hoffmann" and of Guntherzb. 
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